Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 18 de 18
Filtre
1.
Front Immunol ; 14: 1129245, 2023.
Article Dans Anglais | MEDLINE | ID: covidwho-2294762

Résumé

Introduction: Numerous agents for prophylaxis of SARS-CoV-2-induced diseases are currently registered for the clinical use. Formation of the immunity happens within several weeks following vaccine administration which is their key disadvantage. In contrast, drugs based on monoclonal antibodies, enable rapid passive immunization and therefore can be used for emergency pre- and post-exposure prophylaxis of COVID-19. However rapid elimination of antibody-based drugs from the circulation limits their usage for prolonged pre-exposure prophylaxis. Methods: In current work we developed a recombinant adeno-associated viral vector (rAAV), expressing a SARS-CoV-2 spike receptor-binding domain (RBD)-specific antibody P2C5 fused with a human IgG1 Fc fragment (P2C5-Fc) using methods of molecular biotechnology and bioprocessing. Results and discussions: A P2C5-Fc antibody expressed by a proposed rAAV (rAAV-P2C5-Fc) was shown to circulate within more than 300 days in blood of transduced mice and protect animals from lethal SARS-CoV-2 virus (B.1.1.1 and Omicron BA.5 variants) lethal dose of 105 TCID50. In addition, rAAV-P2C5-Fc demonstrated 100% protective activity as emergency prevention and long-term prophylaxis, respectively. It was also demonstrated that high titers of neutralizing antibodies to the SARS-CoV-2 virus were detected in the blood serum of animals that received rAAV-P2C5-Fc for more than 10 months from the moment of administration.Our data therefore indicate applicability of an rAAV for passive immunization and induction of a rapid long-term protection against various SARS-CoV-2 variants.


Sujets)
COVID-19 , Humains , Animaux , Souris , COVID-19/prévention et contrôle , SARS-CoV-2 , Biotechnologie , Anticorps monoclonaux , Anticorps antiviraux , Fragments Fc des immunoglobulines
2.
Front Immunol ; 14: 1098302, 2023.
Article Dans Anglais | MEDLINE | ID: covidwho-2275528

Résumé

Single-domain antibodies (sdAbs, VHHs, or nanobodies) are a promising tool for the treatment of both infectious and somatic diseases. Their small size greatly simplifies any genetic engineering manipulations. Such antibodies have the ability to bind hard-to-reach antigenic epitopes through long parts of the variable chains, the third complementarity-determining regions (CDR3s). VHH fusion with the canonical immunoglobulin Fc fragment allows the Fc-fusion single-domain antibodies (VHH-Fc) to significantly increase their neutralizing activity and serum half-life. Previously we have developed and characterized VHH-Fc specific to botulinum neurotoxin A (BoNT/A), that showed a 1000-fold higher protective activity than monomeric form when challenged with five times the lethal dose (5 LD50) of BoNT/A. During the COVID-19 pandemic, mRNA vaccines based on lipid nanoparticles (LNP) as a delivery system have become an important translational technology that has significantly accelerated the clinical introduction of mRNA platforms. We have developed an mRNA platform that provides long-term expression after both intramuscular and intravenous application. The platform has been extensively characterized using firefly luciferase (Fluc) as a reporter. An intramuscular administration of LNP-mRNA encoding VHH-Fc antibody made it possible to achieve its rapid expression in mice and resulted in 100% protection when challenged with up to 100 LD50 of BoNT/A. The presented approach for the delivery of sdAbs using mRNA technology greatly simplifies drug development for antibody therapy and can be used for emergency prophylaxis.


Sujets)
Toxines botuliniques de type A , COVID-19 , Anticorps à domaine unique , Animaux , Humains , Souris , Anticorps à domaine unique/génétique , Pandémies , Relation dose-effet des médicaments
3.
Vaccines (Basel) ; 11(1)2022 Dec 30.
Article Dans Anglais | MEDLINE | ID: covidwho-2230413

Résumé

Vaccination against COVID-19 has occurred in Russia for more than two years. According to the Russian official clinical guidelines to maintain tense immunity in the conditions of the ongoing COVID-19 pandemic, it is necessary to use booster immunization six months after primary vaccination or a previous COVID-19 contraction. It is especially important to ensure the maintenance of protective immunity in the elderly, who are at risk of severe courses of COVID-19. Meanwhile, the immunological effectiveness of the booster doses has not been sufficiently substantiated. To investigate the immunogenicity of Sputnik V within the recommended revaccination regimen and evaluate the effectiveness of booster doses, we conducted this study on 3983 samples obtained from individuals previously vaccinated with Sputnik V in Moscow. We analyzed the level of antibodies in BAU/mL three times: (i) six months after primary immunization immediately before the booster (RV), (ii) 3 weeks after the introduction of the first component of the booster (RV1), and (iii) 3 weeks after the introduction of the second component of the booster (RV2). Six months after the primary vaccination with Sputnik V, 95.5% of patients maintained a positive level of IgG antibodies to the receptor-binding domain (RBD) of SARS-CoV-2. The degree of increase in the specific virus-neutralizing antibodies level after revaccination increased with a decrease in their initial level just before the booster dose application. In the group of people with the level of antibodies up to 100 BAU/mL six months after the vaccination, a more than eightfold increase (p < 0.001, Wilcoxon criterion with Bonferroni adjustment) in the level of specific antibodies was observed (Me = 8.84 (IQR: 3.63−30.61)). A significant increase in the IgG level after receiving both the first and the second booster doses occurred at the initial titer level up to 300 BAU/ mL (p < 0.001) in those who did not contract COVID-19 in the past and up to 100 BAU/mL (p < 0.001) in those who were previously infected with SARS-CoV-2. A significant increase in the antibody level after the first dose of the booster was noted for people who had up to 500 BAU/mL (p < 0.05), regardless of the previous COVID-19 infection. Thus, revaccination is most effective in individuals with an antibody level below 500 BAU/mL, regardless of the vaccinee age and COVID-19 contraction. For the first time, it has been shown that a single booster dose of the Sputnik vaccine is sufficient to form a protective immunity in most vaccinees regardless of age and preexisting antibody level.

4.
Int J Mol Sci ; 23(17)2022 Sep 05.
Article Dans Anglais | MEDLINE | ID: covidwho-2235709

Résumé

Despite the widespread use of the COVID-19 vaccines, the search for effective antiviral drugs for the treatment of patients infected with SARS-CoV-2 is still relevant. Genetic variability leads to the continued circulation of new variants of concern (VOC). There is a significant decrease in the effectiveness of antibody-based therapy, which raises concerns about the development of new antiviral drugs with a high spectrum of activity against VOCs. We synthesized new analogs of uracil derivatives where uracil was substituted at the N1 and N3 positions. Antiviral activity was studied in Vero E6 cells against VOC, including currently widely circulating SARS-CoV-2 Omicron. All synthesized compounds of the panel showed a wide antiviral effect. In addition, we determined that these compounds inhibit the activity of recombinant SARS-CoV-2 RdRp. Our study suggests that these non-nucleoside uracil-based analogs may be of future use as a treatment for patients infected with circulating SARS-CoV-2 variants.


Sujets)
, SARS-CoV-2 , Antiviraux/pharmacologie , Vaccins contre la COVID-19 , Humains , Uracile/pharmacologie
5.
Int J Mol Sci ; 23(23)2022 Nov 24.
Article Dans Anglais | MEDLINE | ID: covidwho-2123701

Résumé

Findings collected over two and a half years of the COVID-19 pandemic demonstrated that the level immunity resulting from vaccination and infection is insufficient to stop the circulation of new genetic variants. The short-term decline in morbidity was followed by a steady increase. The early identification of new genetic lineages that will require vaccine adaptation in the future is an important research target. In this study, we summarised data on the variability of genetic line composition throughout the COVID-19 pandemic in Moscow, Russia, and evaluated the virological and epidemiological features of dominant variants in the context of selected vaccine prophylaxes. The prevalence of the Omicron variant highlighted the low effectiveness of the existing immune layer in preventing infection, which points to the necessity of optimising the antigens used in vaccines in Moscow. Logistic growth curves showing the rate at which the new variant displaces the previously dominant variants may serve as early indicators for selecting candidates for updated vaccines, along with estimates of efficacy, reduced viral neutralising activity against the new strains, and viral load in previously vaccinated patients.


Sujets)
COVID-19 , Vaccins , Humains , SARS-CoV-2/génétique , COVID-19/épidémiologie , COVID-19/prévention et contrôle , Pandémies
6.
Vaccines (Basel) ; 10(11)2022 Oct 26.
Article Dans Anglais | MEDLINE | ID: covidwho-2090383

Résumé

Medical personnel are a group of people that often encounter infectious agents, leading to greater risk of contracting infectious diseases. Specific prevention of diseases in this group is a priority. The epidemiological effectiveness of COVID-19 prevention in the group of medical workers due to the emergence of new variants of concern of the SARS-CoV-2 virus has not been studied in sufficient depth. We conducted a study of the effectiveness of vaccine use to protect medical workers at a large medical center for obstetrics and gynecology in Moscow. Sputnik V and Sputnik Light were the main vaccines used for the prevention of COVID-19. The vaccines are based on a variant of the S-protein of the SARS-CoV-2 virus, with adenovirus serotypes 5 and 26 as the vector for delivery. Vaccination of employees occurred during the period in which the Delta variant was spreading. The overall epidemiological effectiveness was 81.7% (73.1-87.6%) during the period in which the Delta variant was dominant. During the period from the beginning of vaccination (26 November 2020) until 8 February 2022, the overall effectiveness was 89.1% (86.9-91.0%). As expected, the highest effectiveness during this period was obtained in the group that received the third and fourth doses-96.5% (75.0-99.5%). The severity of COVID-19 in the vaccinated group was significantly lower than in the unvaccinated group.

7.
Emerg Microbes Infect ; 11(1): 2229-2247, 2022 Dec.
Article Dans Anglais | MEDLINE | ID: covidwho-2004931

Résumé

Although unprecedented efforts aiming to stop the COVID-19 pandemic have been made over the past two years, SARSCoV-2 virus still continues to cause intolerable health and economical losses. Vaccines are considered the most effective way to prevent infectious diseases, which has been reaffirmed for COVID-19. However, in the context of the continuing virus spread because of insufficient vaccination coverage and emergence of new variants of concern, there is a high demand for vaccination strategy amendment. The ability to elicit protective immunity at the entry gates of infection provided by mucosal vaccination is key to block virus infection and transmission. Therefore, these mucosal vaccines are believed to be a "silver bullet" that could bring the pandemic to an end. Here, we demonstrate that the intranasally delivered Gam-COVID-Vac (Sputnik V) vaccine induced a robust (no less than 180 days) systemic and local immune response in mice. High immunogenic properties of the vaccine were verified in non-human primates (common marmosets) by marked IgG and neutralizing antibody (NtAb) production in blood serum, antigen-specific Tcell proliferation and cytokine release of peripheral blood mononuclear cells accompanied by formation of IgA antibodies in the nasal mucosa. We also demonstrate that Sputnik V vaccine can provide sterilizing immunity in K18-hACE2 transgenic mice exposed to experimental lethal SARS-CoV-2 infection protecting them against severe lung immunopathology and mortality. We believe that intranasal Sputnik V vaccine is a promising novel needle-free mucosal vaccine candidate for primary immunization as well as for revaccination and is worth further clinical investigation.


Sujets)
Vaccins contre la COVID-19 , COVID-19 , Animaux , Anticorps neutralisants , Anticorps antiviraux , COVID-19/prévention et contrôle , Cytokines , Humains , Immunogénicité des vaccins , Immunoglobuline A , Immunoglobuline G , Agranulocytes , Souris , Pandémies/prévention et contrôle , Primates , SARS-CoV-2/génétique
8.
EClinicalMedicine ; 46: 101360, 2022 Apr.
Article Dans Anglais | MEDLINE | ID: covidwho-1959480

Résumé

Background: HIV-infection is known to aggravate the course of many infectious diseases, including COVID-19. International guidance recommends vaccination of HIV+ individuals against SARS-CoV-2. There is a paucity of data on epidemiological efficacy assessment of COVID-19 vaccines among HIV+. This paper provides a preliminary assessment of Sputnik V vaccine effectiveness in HIV+ patients on antiretroviral therapy (ART). Methods: We performed a retrospective cohort study to assess the effectiveness of the standard Sputnik V vaccination regimen in 24,423 HIV+ Moscow residents during spring - summer 2021, that included dominance of delta variant, with estimation of hospitalization and severe illness rates in vaccinated and unvaccinated patients. Data were extracted from the Moscow anti-COVID-19 vaccination and COVID-19 incidence Registries. Findings: The data obtained indicate that Sputnik V epidemiological efficiency in the entire cohort of HIV+ on ART was 76·33%; in HIV+ with CD4+ ≥ 350 cells/µl, vaccine efficiency was 79·42%, avoiding hospitalization in 90·12% cases and protecting from the development of moderate or severe disease in 97·06%. For delta variant in this group the efficiency was 65·35%, avoiding the need for hospitalization in 75·77% cases and protecting from the development of moderate or severe disease in 93·05% of patients. There was a trend, although not statistically significant, of declining vaccine efficiency in immune-compromised individuals (CD4+ < 350 cells/µl). Interpretation: The study suggested epidemiological efficiency of immunization with Sputnik V in HIV+ ART-treated patients for the original and delta SARS-CoV-2 variants. Funding: Ministry of Health of Russia and Moscow Healthcare Department.

9.
Vaccines (Basel) ; 10(5)2022 May 21.
Article Dans Anglais | MEDLINE | ID: covidwho-1928683

Résumé

The new Omicron variant of SARS-CoV-2, first identified in November 2021, is rapidly spreading all around the world. Omicron has become the dominant variant of SARS-CoV-2. There are many ongoing studies evaluating the effectiveness of existing vaccines. Studies on the neutralizing activity of vaccinated sera against the Omicron variant are currently being carried out in many laboratories. In this study, we have shown the neutralizing activity of sera against the SARS-CoV-2 Omicron variant compared to the reference Wuhan D614G variant in individuals vaccinated with two doses of Sputnik V up to 6 months after vaccination and in individuals who experienced SARS-CoV-2 infection either before or after vaccination. As a control to our study we also measured neutralizing antibody titers in individuals vaccinated with two doses of BNT162b2. The decrease in NtAb titers to the Omicron variant was 8.1-fold for the group of Sputnik V-vaccinated individuals. When the samples were stratified for the time period after vaccination, a 7.6-fold or 8.8-fold decrease in NtAb titers was noticed after up to 3 and 3-to-6 months after vaccination. We observed a 6.7- and 5-fold decrease in Sputnik V-vaccinated individuals experiencing asymptomatic or symptomatic infection, respectively. These results highlight the observation that the decrease in NtAb to the SARS-CoV-2 Omicron variant compared to the Wuhan variant occurs for different COVID-19 vaccines in use, with some showing no neutralization at all, confirming the necessity of a third booster vaccination.

10.
Vaccines (Basel) ; 10(6)2022 Jun 13.
Article Dans Anglais | MEDLINE | ID: covidwho-1911687

Résumé

Mass vaccination campaigns against COVID-19 affected more than 90% of the population in most developed countries. The new epidemiologic wave of COVID-19 has been ongoing since the end of 2021. It is caused by a virus variant B.1.1.529, also known as "Omicron" and its descendants. The effectiveness of major vaccines against Omicron is not known. The purpose of this study is to evaluate the efficacy of the Sputnik V vaccine. The main goal is to assess its protection against hospitalization in the period of Omicron dominance. We conducted our study based on a large clinical center in Moscow (Russia) where 1112 patients were included. We used the case-population method to perform the calculations. The data we obtained indicate that the Omicron variant causes at least 90% of infections in the studied cohort. The effectiveness of protection against hospitalization with COVID-19 in our study was 85.9% (95% CI 83.0-88.0%) for those who received more than one dose. It was 87.6% (95% CI 85.4-89.5%) and 97.0% (95% CI 95.9-97.8%) for those who received more than two or three doses. The effectiveness in cases of more severe forms was higher than for less severe ones. Thus, present study indicates the high protective efficacy of vaccination against hospitalization with COVID-19 in case of Omicron lineage.

11.
J Immunol ; 208(5): 1139-1145, 2022 03 01.
Article Dans Anglais | MEDLINE | ID: covidwho-1662741

Résumé

Despite measures taken world-wide, the coronavirus disease 2019 (COVID-19) pandemic continues. Because efficient antiviral drugs are not yet widely available, vaccination is the best option to control the infection rate. Although this option is obvious in the case of COVID-19-naive individuals, it is still unclear when individuals who have recovered from a previous SARS-CoV-2 infection should be vaccinated and whether the vaccination raises immune responses against the coronavirus and its novel variants. In this study, we collected peripheral blood from 84 healthy human donors of different COVID-19 status who were vaccinated with the Sputnik Light vaccine and measured the dynamics of the Ab and T cell responses, as well as the virus-neutralizing activity (VNA) in serum, against two SARS-CoV-2 variants, B.1.1.1 and B.1.617.2. We showed that vaccination of individuals previously exposed to the virus considerably boosts the existing immune response. In these individuals, receptor-binding domain (RBD)-specific IgG titers and VNA in serum were already elevated on the 7th day after vaccination, whereas COVID-19-naive individuals developed the Ab response and VNA mainly 21 d postvaccination. Additionally, we found a strong correlation between RBD-specific IgG titers and VNA in serum, and according to these data vaccination may be recommended when the RBD-specific IgG titers drop to 142.7 binding Ab units/ml or below. In summary, the results of the study demonstrate that vaccination is beneficial for both COVID-19-naive and recovered individuals, especially since it raises serum VNA against the B.1.617.2 variant, one of the five SARS-CoV-2 variants of concern.


Sujets)
Anticorps neutralisants/sang , Anticorps antiviraux/sang , Vaccins contre la COVID-19/immunologie , SARS-CoV-2/immunologie , Vaccins synthétiques/immunologie , Adulte , Anticorps neutralisants/immunologie , Anticorps antiviraux/immunologie , COVID-19/immunologie , COVID-19/prévention et contrôle , Femelle , Humains , Immunoglobuline G/sang , Immunoglobuline G/immunologie , Mâle , Adulte d'âge moyen , Domaines protéiques/immunologie , Russie , Lymphocytes T/immunologie , Vaccination
12.
Front Immunol ; 12: 771609, 2021.
Article Dans Anglais | MEDLINE | ID: covidwho-1551509

Résumé

An excessive inflammatory response to SARS-CoV-2 is thought to be a major cause of disease severity and mortality in patients with COVID-19. Longitudinal analysis of cytokine release can expand our understanding of the initial stages of disease development and help to identify early markers serving as predictors of disease severity. In this study, we performed a comprehensive analysis of 46 cytokines (including chemokines and growth factors) in the peripheral blood of a large cohort of COVID-19 patients (n=444). The patients were classified into five severity groups. Longitudinal analysis of all patients revealed two groups of cytokines, characterizing the "early" and "late" stages of the disease course and the switch between type 1 and type 2 immunity. We found significantly increased levels of cytokines associated with different severities of COVID-19, and levels of some cytokines were significantly higher during the first three days from symptom onset (DfSO) in patients who eventually required intensive care unit (ICU) therapy. Additionally, we identified nine cytokines, TNF-α, IL-10, MIG, IL-6, IP-10, M-CSF, G-CSF, GM-CSF, and IFN-α2, that can be used as good predictors of ICU requirement at 4-6 DfSO.


Sujets)
Anticorps antiviraux/sang , COVID-19/mortalité , Syndrome de libération de cytokines/sang , Cytokines/sang , SARS-CoV-2/immunologie , Indice de gravité de la maladie , Réaction inflammatoire aigüe/sang , Anticorps antiviraux/immunologie , COVID-19/anatomopathologie , Soins de réanimation/statistiques et données numériques , Syndrome de libération de cytokines/anatomopathologie , Femelle , Humains , Immunoglobuline A/sang , Immunoglobuline G/sang , Immunoglobuline M/sang , Mâle , Adulte d'âge moyen , Pronostic , ARN viral/analyse
13.
Lancet Reg Health Eur ; 11: 100241, 2021 Dec.
Article Dans Anglais | MEDLINE | ID: covidwho-1506938

Résumé

BACKGROUND: While the world is experiencing another wave of COVID-19 pandemic, global vaccination program is hampered by an evident shortage in the supply of licensed vaccines. In an effort to satisfy vaccine demands we developed a new single-dose vaccine based on recombinant adenovirus type 26 (rAd26) vector carrying the gene for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) glycoprotein - "Sputnik Light". METHODS: We conducted an open label, prospective, non-randomised phase 1/2 trial aimed to assess safety, tolerability, and immunogenicity of "Sputnik Light" vaccine in a single center in Russia. Primary outcome measures were antigen-specific humoral immunity (Anti-RBD-SARS-CoV-2 antibodies measured by ELISA on days 1, 10, 28, and 42) and safety (number of participants with adverse events monitored throughout the study). Secondary outcome measures were antigen-specific cellular immunity (measured by antigen-dependent CD4+ and CD8+ T-cell proliferation, number of antigen-specific interferon-γ-producing cells as well as interferon-γ concentration upon antigen restimulation) and change in neutralizing antibodies (measured in SARS-CoV-2 neutralization assay). FINDINGS: Most of the solicited adverse reactions were mild (66·4% from all vaccinees), few were moderate (5·5%). No serious adverse events were detected. Assessment of Anti-RBD-SARS-CoV-2 antibodies revealed a group with pre-existing immunity to SARS-CoV-2. Upon this finding we separated all safety and immunogenicity data based on pre-existing immunity to SARS-CoV-2. There were notable differences in the vaccine effects on immunogenicity by the groups. Vaccination of seropositive (N=14) volunteers rapidly boosted RBD-specific IgGs from reciprocal geometric mean titer (​GMT) 594·4 at a baseline up to 26899 comparing to 29·09 in seronegative group (N=96) by day 10. By day 42 seroconversion rate reached 100% (93/93) in seronegative group with GMT 1648. At the same time, in the seropositive group, seroconversion rate by day 42 was 92·9% (13/14) with GMT 19986. Analysis of neutralizing antibodies to SARS-CoV-2 showed 81·7% (76/93) and 92·9% (13/14) seroconversion rates by day 42 with median reciprocal GMT 15·18 and 579·7 in the seronegative and seropositive groups, respectively. Antigen-specific T cell proliferation, formation of IFNy-producing cells, and IFNy secretion were observed in 96·7% (26/27), 96% (24/25), and 96% (24/25) of the seronegative group respectively and in 100% (3/3), 100% (5/5), and 100% (5/5) of the seropositive vaccinees, respectively. INTERPRETATION: The single-dose rAd26 vector-based COVID-19 vaccine "Sputnik Light" has a good safety profile and induces a strong humoral and cellular immune responses both in seronegative and seropositive participants. FUNDING: Russian Direct Investment Fund.

14.
Int J Environ Res Public Health ; 18(17)2021 08 27.
Article Dans Anglais | MEDLINE | ID: covidwho-1374403

Résumé

The SARS-CoV-2 pandemic remains a global health issue for several reasons, such as the low vaccination rates and a lack of developed herd immunity to the evolution of SARS-CoV-2, as well as its potential inclination to elude neutralizing antibodies. It should be noted that the severity of the COVID-19 disease is significantly affected by the presence of co-infections. Comorbid conditions are caused not only by pathogenic and opportunistic microorganisms but also by some representatives of the environmental microbiome. The presence of patients with moderate and severe forms of the disease in hospitals indicates the need for epidemiological monitoring of (1) bacterial pathogens circulating in hospitals, especially the ESKAPE group pathogens, and (2) the microbiome of various surfaces in hospitals. In our study, we used combined methods based on PCR and NGS sequencing, which are widely used for epidemiological monitoring. Through this approach, we identified the DNA of pathogenic bacteria (Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, CoNS, and Achromobacter spp.) on various surfaces. We also estimated the microbiome diversity of surfaces and identified the potential reservoirs of infections using 16S rRNA profiling. Although we did not assess the viability of identified microorganisms, our results indicate the possible risks of insufficient regular disinfection of surfaces, regardless of department, at the Infectious Diseases Hospital. Controlling the transmission of nosocomial diseases is critical to the successful treatment of COVID-19 patients, the rational use of antimicrobial drugs, and timely decontamination measures.


Sujets)
COVID-19 , Bactéries/génétique , Épidémies de maladies , Hôpitaux , Humains , ARN ribosomique 16S/génétique , SARS-CoV-2
15.
Vaccines (Basel) ; 9(7)2021 Jul 12.
Article Dans Anglais | MEDLINE | ID: covidwho-1308465

Résumé

Since the beginning of the 2021 year, all the main six vaccines against COVID-19 have been used in mass vaccination companies around the world. Virus neutralization and epidemiological efficacy drop obtained for several vaccines against the B.1.1.7, B.1.351 P.1, and B.1.617 genotypes are of concern. There is a growing number of reports on mutations in receptor-binding domain (RBD) increasing the transmissibility of the virus and escaping the neutralizing effect of antibodies. The Sputnik V vaccine is currently approved for use in more than 66 countries but its activity against variants of concern (VOC) is not extensively studied yet. Virus-neutralizing activity (VNA) of sera obtained from people vaccinated with Sputnik V in relation to internationally relevant genetic lineages B.1.1.7, B.1.351, P.1, B.1.617.2, B.1.617.3 and Moscow endemic variants B.1.1.141 (T385I) and B.1.1.317 (S477N, A522S) with mutations in the RBD domain has been assessed. The data obtained indicate no significant differences in VNA against B.1.1.7, B.1.617.3 and local genetic lineages B.1.1.141 (T385I), B.1.1.317 (S477N, A522S) with RBD mutations. For the B.1.351, P.1, and B.1.617.2 statistically significant 3.1-, 2.8-, and 2.5-fold, respectively, VNA reduction was observed. Notably, this decrease is lower than that reported in publications for other vaccines. However, a direct comparative study is necessary for a conclusion. Thus, sera from "Sputnik V"-vaccinated retain neutralizing activity against VOC B.1.1.7, B.1.351, P.1, B.1.617.2, B.1.617.3 as well as local genetic lineages B.1.1.141 and B.1.1.317 circulating in Moscow.

16.
Vox Sang ; 116(6): 665-672, 2021 Jul.
Article Dans Anglais | MEDLINE | ID: covidwho-1140312

Résumé

BACKGROUND AND OBJECTIVES: COVID-19 convalescent plasma is an experimental treatment against SARS-CoV-2. The aim of this study is to assess the impact of different pathogen reduction methods on the levels and virus neutralizing activity of the specific antibodies against SARS-CoV2 in convalescent plasma. MATERIALS AND METHODS: A total of 140 plasma doses collected by plasmapheresis from COVID-19 convalescent donors were subjected to pathogen reduction by three methods: methylene blue (M)/visible light, riboflavin (R)/UVB and amotosalen (A)/UVA. To conduct a paired comparison, individual plasma doses were divided into 2 samples that were subjected to one of these methods. The titres of SARS-CoV2 neutralizing antibodies (NtAbs) and levels of specific immunoglobulins to RBD, S- and N-proteins of SARS-CoV-2 were measured before and after pathogen reduction. RESULTS: The methods reduced NtAbs titres differently: among units with the initial titre 80 or above, 81% of units remained unchanged and 19% decreased by one step after methylene blue; 60% were unchanged and 40% decreased by one step after amotosalen; after riboflavin 43% were unchanged and 50% (7%, respectively) had a one-step (two-step, respectively) decrease. Paired two-sample comparisons (M vs. A, M vs. R and A vs. R) revealed that the largest statistically significant decrease in quantity and activity of the specific antibodies resulted from the riboflavin treatment. CONCLUSION: Pathogen reduction with methylene blue or with amotosalen provides the greater likelihood of preserving the immunological properties of the COVID-19 convalescent plasma compared to riboflavin.


Sujets)
Sécurité transfusionnelle/méthodes , Pathogènes transmissibles par le sang/isolement et purification , COVID-19/thérapie , Plasma sanguin/immunologie , Anticorps neutralisants/sang , COVID-19/immunologie , Furocoumarines , Humains , Immunisation passive , Bleu de méthylène , Riboflavine , SARS-CoV-2/immunologie ,
17.
Lancet ; 397(10275): 671-681, 2021 02 20.
Article Dans Anglais | MEDLINE | ID: covidwho-1062668

Résumé

BACKGROUND: A heterologous recombinant adenovirus (rAd)-based vaccine, Gam-COVID-Vac (Sputnik V), showed a good safety profile and induced strong humoral and cellular immune responses in participants in phase 1/2 clinical trials. Here, we report preliminary results on the efficacy and safety of Gam-COVID-Vac from the interim analysis of this phase 3 trial. METHODS: We did a randomised, double-blind, placebo-controlled, phase 3 trial at 25 hospitals and polyclinics in Moscow, Russia. We included participants aged at least 18 years, with negative SARS-CoV-2 PCR and IgG and IgM tests, no infectious diseases in the 14 days before enrolment, and no other vaccinations in the 30 days before enrolment. Participants were randomly assigned (3:1) to receive vaccine or placebo, with stratification by age group. Investigators, participants, and all study staff were masked to group assignment. The vaccine was administered (0·5 mL/dose) intramuscularly in a prime-boost regimen: a 21-day interval between the first dose (rAd26) and the second dose (rAd5), both vectors carrying the gene for the full-length SARS-CoV-2 glycoprotein S. The primary outcome was the proportion of participants with PCR-confirmed COVID-19 from day 21 after receiving the first dose. All analyses excluded participants with protocol violations: the primary outcome was assessed in participants who had received two doses of vaccine or placebo, serious adverse events were assessed in all participants who had received at least one dose at the time of database lock, and rare adverse events were assessed in all participants who had received two doses and for whom all available data were verified in the case report form at the time of database lock. The trial is registered at ClinicalTrials.gov (NCT04530396). FINDINGS: Between Sept 7 and Nov 24, 2020, 21 977 adults were randomly assigned to the vaccine group (n=16 501) or the placebo group (n=5476). 19 866 received two doses of vaccine or placebo and were included in the primary outcome analysis. From 21 days after the first dose of vaccine (the day of dose 2), 16 (0·1%) of 14 964 participants in the vaccine group and 62 (1·3%) of 4902 in the placebo group were confirmed to have COVID-19; vaccine efficacy was 91·6% (95% CI 85·6-95·2). Most reported adverse events were grade 1 (7485 [94·0%] of 7966 total events). 45 (0·3%) of 16 427 participants in the vaccine group and 23 (0·4%) of 5435 participants in the placebo group had serious adverse events; none were considered associated with vaccination, with confirmation from the independent data monitoring committee. Four deaths were reported during the study (three [<0·1%] of 16 427 participants in the vaccine group and one [<0·1%] of 5435 participants in the placebo group), none of which were considered related to the vaccine. INTERPRETATION: This interim analysis of the phase 3 trial of Gam-COVID-Vac showed 91·6% efficacy against COVID-19 and was well tolerated in a large cohort. FUNDING: Moscow City Health Department, Russian Direct Investment Fund, and Sberbank.


Sujets)
Vaccins contre la COVID-19/effets indésirables , Vaccins contre la COVID-19/immunologie , COVID-19/prévention et contrôle , Vaccins synthétiques/effets indésirables , Vaccins synthétiques/immunologie , Adulte , Anticorps antiviraux/sang , COVID-19/immunologie , Méthode en double aveugle , Femelle , Humains , Rappel de vaccin , Injections musculaires , Mâle , Adulte d'âge moyen , Moscou , Glycoprotéine de spicule des coronavirus/génétique , Glycoprotéine de spicule des coronavirus/immunologie
18.
Lancet ; 396(10255): 887-897, 2020 09 26.
Article Dans Anglais | MEDLINE | ID: covidwho-974769

Résumé

BACKGROUND: We developed a heterologous COVID-19 vaccine consisting of two components, a recombinant adenovirus type 26 (rAd26) vector and a recombinant adenovirus type 5 (rAd5) vector, both carrying the gene for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike glycoprotein (rAd26-S and rAd5-S). We aimed to assess the safety and immunogenicity of two formulations (frozen and lyophilised) of this vaccine. METHODS: We did two open, non-randomised phase 1/2 studies at two hospitals in Russia. We enrolled healthy adult volunteers (men and women) aged 18-60 years to both studies. In phase 1 of each study, we administered intramuscularly on day 0 either one dose of rAd26-S or one dose of rAd5-S and assessed the safety of the two components for 28 days. In phase 2 of the study, which began no earlier than 5 days after phase 1 vaccination, we administered intramuscularly a prime-boost vaccination, with rAd26-S given on day 0 and rAd5-S on day 21. Primary outcome measures were antigen-specific humoral immunity (SARS-CoV-2-specific antibodies measured by ELISA on days 0, 14, 21, 28, and 42) and safety (number of participants with adverse events monitored throughout the study). Secondary outcome measures were antigen-specific cellular immunity (T-cell responses and interferon-γ concentration) and change in neutralising antibodies (detected with a SARS-CoV-2 neutralisation assay). These trials are registered with ClinicalTrials.gov, NCT04436471 and NCT04437875. FINDINGS: Between June 18 and Aug 3, 2020, we enrolled 76 participants to the two studies (38 in each study). In each study, nine volunteers received rAd26-S in phase 1, nine received rAd5-S in phase 1, and 20 received rAd26-S and rAd5-S in phase 2. Both vaccine formulations were safe and well tolerated. The most common adverse events were pain at injection site (44 [58%]), hyperthermia (38 [50%]), headache (32 [42%]), asthenia (21 [28%]), and muscle and joint pain (18 [24%]). Most adverse events were mild and no serious adverse events were detected. All participants produced antibodies to SARS-CoV-2 glycoprotein. At day 42, receptor binding domain-specific IgG titres were 14 703 with the frozen formulation and 11 143 with the lyophilised formulation, and neutralising antibodies were 49·25 with the frozen formulation and 45·95 with the lyophilised formulation, with a seroconversion rate of 100%. Cell-mediated responses were detected in all participants at day 28, with median cell proliferation of 2·5% CD4+ and 1·3% CD8+ with the frozen formulation, and a median cell proliferation of 1·3% CD4+ and 1·1% CD8+ with the lyophilised formulation. INTERPRETATION: The heterologous rAd26 and rAd5 vector-based COVID-19 vaccine has a good safety profile and induced strong humoral and cellular immune responses in participants. Further investigation is needed of the effectiveness of this vaccine for prevention of COVID-19. FUNDING: Ministry of Health of the Russian Federation.


Sujets)
Infections à coronavirus/prévention et contrôle , Rappel de vaccin , Pandémies/prévention et contrôle , Pneumopathie virale/prévention et contrôle , Vaccins antiviraux/immunologie , Adenoviridae , Adulte , Anticorps neutralisants/sang , Anticorps antiviraux/sang , Betacoronavirus , COVID-19 , Vaccins contre la COVID-19 , Infections à coronavirus/immunologie , Femelle , Humains , Immunité cellulaire , Immunité humorale , Immunoglobuline G/sang , Injections musculaires , Mâle , Russie , SARS-CoV-2 , Vaccins antiviraux/effets indésirables , Jeune adulte
SÉLECTION CITATIONS
Détails de la recherche